8.0 ALTERNATIVES

Section 15126.6(a) of the CEQA Guidelines states that “an EIR shall describe a range of reasonable alternatives to the project or to the location of the project, which would feasibly attain most of the basic objectives of the project but would avoid or substantially lessen any of the significant effects of the project, and evaluate the comparative merits of the alternatives.” The EIR is to consider a “reasonable range” of alternatives to foster informed decision-making and public participation.

CEQA requires the EIR to identify feasible alternatives to the proposed project that will avoid, or at least lessen, significant impacts associated with the project. CEQA defines “feasible” as follows:

“‘Feasible’ means capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, legal, social and technological factors.”

As described in Section 4.7 of this EIR, the objectives of the San Joaquin Apartments project are to:

1. Implement provisions of the 2010 LRDP to provide on-campus student housing commensurate with planned student enrollment growth and as required by 2010 LRDP EIR mitigation requirements and agreements between UCSB and the City of Goleta and County of Santa Barbara.

2. Provide housing that is compatible with surrounding land uses and minimizes environmental impacts to resources on and adjacent to the project site.

3. Provide on-site services required for student residents and provide amenities that enhance learning and social interaction.

4. Provide a project design that implements the University’s sustainability goals.

5. Provide parking adequate to accommodate the proposed project’s demand.

Five alternatives to the San Joaquin Apartments project have been evaluated in this EIR. Each alternative is described below.

No Project Alternative. This alternative evaluates environmental conditions that would result if the proposed project were not implemented.

Alternative Project Site Alternative. This alternative consists of two components: the Ocean Road Project Site Component and the Faculty and Staff Residential Units Component.

Ocean Road Project Site Component. This component would construct facilities similar to those to be provided by the San Joaquin Apartments project, but at a different on-campus
location. A housing site designated by the 2010 LRDP along Ocean Road on the Main Campus was selected for this alternative.

The Ocean Road component of the Alternative Project Site Alternative is located on the west side of Ocean Road along the western perimeter of the Main Campus, and the 2010 LRDP applied a “Residential” land use designation to this site. The 2010 LRDP further designated the housing type as faculty, staff and graduate students. Facilities to be provided at the Ocean Road site would include: 1,003 undergraduate student bed spaces, eight faculty and staff residential units, a new dining commons and convenience store, various indoor/outdoor recreation facilities, and the other student-serving facilities that would be provided by the proposed San Joaquin Apartments project. It was assumed that the dining commons, convenience store and project-related parking would be provided at a site that is currently a parking lot and located adjacent to and on the east side of Ocean Road, which is designated in the 2010 LRDP as “Housing.”

Faculty and Staff Residential Units Component. This component assumes 150 faculty/staff housing units would be constructed on the Ocean Road site, and the additional 393 faculty/staff housing units proposed in the 2010 LRDP for the Ocean Road housing site displaced under the Alternative Project Site Alternative would be constructed at the San Joaquin site.

It was assumed that the faculty/staff units displaced by construction of undergraduate student housing on the Ocean Road site would be shifted to the San Joaquin site for purposes of the Alternative Project Site Alternative analysis because the San Joaquin site is the only on-campus housing site identified by the 2010 LRDP that would be available (i.e., there would no longer be a housing project planned for the San Joaquin site under this Alternative component) to accept the displaced faculty/staff units. Elimination of the 393 faculty/staff units displaced by this alternative would be inconsistent with the LRDP, LRDP EIR mitigation requirements, and agreements between UCSB and the City of Goleta and County of Santa Barbara that UCSB provide student and faculty housing commensurate with planned student enrollment and faculty/staff growth. All of the on-campus housing sites identified by the 2010 LRDP are necessary in order for UCSB to remain consistent with these requirements. Thus, relocating the units removed from the Ocean Road site to the San Joaquin site is a reasonably foreseeable consequence of the proposed Ocean Road component of the Alternative Project Site Alternative and the associated impacts require analysis pursuant to CEQA.

Project Redesign Alternative. This alternative would implement several changes to the design of the proposed project, including: shift approximately 19 student-occupied units from the San Joaquin site to the proposed 1.5-acre parking lot site on the west side of Storke Road; shift parking spaces from the proposed 1.5-acre parking lot to the San Joaquin site; and relocate a bicycle/pedestrian path that would be located along the northern perimeter of the San Joaquin site. Under this alternative, a total of 1,003 student bed spaces would be provided, including 889 bed spaces on the San Joaquin site and 114 bed spaces on the parking lot site. Other student-serving uses included in the proposed project would also be included in this alternative.

2010 LRDP Project Design Alternative. This alternative compares the impacts of the proposed project to impacts that would result from a project that implements the basic design
concepts for the project site described by the 2010 LRDP. This alternative would result in the development of 600 bed spaces on the San Joaquin site. Other design features of the 2010 Project Design alternative include the continued use of the existing parking area on the northern portion of the San Joaquin site; a new bicycle path that would extend east to west across the central portion of the site; and approximately 12,000 square feet of non-residential space to provide services primarily for on-site residents. This alternative would include the other student-serving facilities that would be provided by the proposed project, such as a dining commons, indoor and outdoor recreation facilities, study and laundry rooms, bike parking, etc. However the size or number of these facilities would be reduced commensurate with the reduced number of on-site residents.

Several additional alternatives to the proposed project were considered but rejected from further analysis because the alternatives would not be feasible, or would not attain most of the basic objectives of the proposed project. Alternatives rejected from further consideration are described below.

An alternative that would develop alternative uses on the project site, such as academic or commercial uses was rejected from further analysis because such an alternative would not be consistent with the 2010 LRDP “Residential” land use designation. Such an alternative would also not implement the basic objectives of the project and would be inconsistent with 2010 LRDP to provide on-campus student housing because areas designated as “Housing” by the 2010 LRDP are necessary for UCSB to provide student and faculty housing commensurate with planned student enrollment and faculty/staff growth as required by LRDP EIR mitigation requirements and agreements between UCSB and the City of Goleta and County of Santa Barbara that UCSB.

An alternative to evaluate impacts of providing student housing at an off-campus location was rejected as being infeasible and inconsistent with the 2010 LRDP. Implementation of an off-campus alternative would require that UCSB acquire a property similar in size to the proposed project (approximately 14 acres), and it is unlikely that a developable parcel that size exists in the vicinity of UCSB campus. Furthermore, the funds allocated for the implementation of the proposed project do not include costs associated with acquiring a suitable alternative project site. An off-campus housing site would be inconsistent with the UCSB housing program described in the 2010 LRDP, which identifies on-campus sites adequate to provide housing commensurate with student and faculty/staff growth envisioned by the 2010 LRDP.

8.1 NO PROJECT ALTERNATIVE

CEQA Guidelines section 15126.6(e) requires that an EIR evaluate a “No Project” alternative. The purpose of this alternative is to “allow decision-makers to compare the impacts of approving the proposed project with the impacts of not approving the proposed project.” This alternative analysis compares the environmental effects of the project site remaining in its existing condition against environmental effects that would occur if the proposed project were approved.

Under the No Project Alternative, student housing, a new dining commons, and other proposed student-serving facilities would not be developed at the San Joaquin apartments site,
and a new parking lot on the west side of Storke Road would not be constructed. Existing parking lots, turf areas and other portions of the project site that would be used for the development of the proposed project would remain in their current condition. This alternative would:

- Avoid the project’s potentially significant but mitigable aesthetic impacts resulting from potential impacts to mature trees, increased lighting, and shadow-related impacts from landscape trees.

- Avoid the project’s potentially significant but mitigable short-term air quality impacts that would result from the generation of dust during project construction.

- Avoid the project’s potentially significant but mitigable impacts to biological resource related to the removal of biologically important mature trees; potential impacts to nesting birds; and potential impacts to sensitive habitat located east of and adjacent to the project site.

- Avoid the project’s potentially significant but mitigable ground movement impacts that may affect the Portola Dining Commons building and/or underground utilities.

- Result in a reduction of the project’s less than significant emissions of greenhouse gases.

- Avoid the project’s potentially significant but mitigable hydrology and water quality impacts related to potential erosion impacts from the discharge of runoff water.

- Avoid the project’s potentially significant but mitigable construction noise impacts.

- Avoid the project’s potentially significant but mitigable project-specific and cumulative traffic impacts.

The No Project Alternative would avoid the impacts of the proposed project. However, implementation of this alternative is not required to reduce the significant impacts of the project to a less than significant level because all of the project’s significant impacts can be reduced to a less than significant level with the implementation of proposed mitigation measures.

It should be recognized that the No Project Alternative would not result in the total avoidance of impacts associated with the proposed project. For example, as enrollment increases at UCSB, students that would have occupied the proposed project’s residential units would be required to commute to campus from residences located elsewhere in the project region. These additional commute trips would contribute traffic to local roadways and result in additional vehicle emissions. These impacts are in addition to the existing impacts associated with students currently commuting to campus that may decide to reside in the proposed project.

Further, the 2010 LRDP established a “Residential” land use designation for the San Joaquin Apartments site and the site on the west side of Storke Road that would be used to
If the proposed project is not approved, it is likely that a different housing project will be proposed in the future on the project site because the San Joaquin project site was identified by the 2010 LRDP as one of four on-campus sites that collectively would be used to provide approximately 5,000 student bed spaces. The other three student housing sites include the dormitory area on the east side of the Main Campus, which the 2010 LRDP estimated would be used to provide about 3,400 of the required additional student bed spaces; the Facilities Management area, which the 2010 LRDP estimated would provide about 1,200 bed spaces; and a small addition to the San Clemente project, that the LRDP estimated could provide approximately 126 bed spaces. A reduction in planned on-campus student bed spaces at the proposed project site, or another student housing site identified in the 2010 LRDP, would trigger a need to relocate those beds in order to meet the student/housing required by LRDP EIR mitigation measure POP-3A, and the settlement agreements UCSB entered into with the County of Santa Barbara and the City of Goleta. The 2010 University of California, Santa Barbara Long Range Development Plan Mitigation Implementation and Settlement Agreement specifies various actions to be implemented by UCSB to minimize traffic and other related effects of implementing the 2010 LRDP. Among other things, the Agreement requires UCSB to provide on-campus student housing for all students above the 2010 LRDP enrollment baseline of 20,000 students. Compliance with the Agreement requires that 5,000 student bed spaces be provided in a phased manner commensurate with enrollment growth envisioned by the 2010 LRDP. 2010 LRDP EIR mitigation measure POP-3A provides similar requirements.

Therefore, it should reasonably be assumed that additional student housing would be developed on the San Joaquin project site sometime during the 2010 LRDP planning period and such development was contemplated in the 2010 LRDP and the 2010 LRDP EIR.

8.2 ALTERNATIVE PROJECT SITE

The Alternative Project Site Alternative consists of two components. The first component is the construction of 1,003 student bed spaces and other facilities that would be provided by the San Joaquin Apartments project at the Ocean Road site. The second component is the relocation of faculty/staff housing units proposed in the 2010 LRDP for the Ocean Road site displaced by the construction of 1,003 student beds. This component evaluates the impacts of relocating the 393 faculty/staff units displaced from the Ocean Road site to the San Joaquin Apartments site.

8.2.1 Ocean Road Project Site Component

The Ocean Road Project Site Component compares the impacts of the proposed project to impacts likely to occur if a comparable number of student housing units/bed spaces and other related uses were to be provided at a different site. The Ocean Road housing site, which is identified in the 2010 LRDP for the development of 543 residential units primarily for faculty and staff, was selected for this analysis. The Ocean Road site is vacant and would not result in the displacement of existing housing. The Ocean Road housing site is located along the western perimeter of the Main Campus (Figure 8.2-1).
Figure 8.2-1
Ocean Road Housing Site

Ocean Road Housing Site

Not to Scale
Under this alternative and consistent with the conceptual design for the Ocean Road site provided by 2010 LRDP, housing would be provided in “blocks” that would coincide with streets in Isla Vista that “dead end” at the western edge of the Main Campus. The new blocks would be created by realigning Ocean Road to the east and relocating the existing Student Health Building. Residential buildings on the new blocks would have heights ranging between approximately 25 and 70 feet. Parking for the Ocean Road Project Site Component would include a limited amount of on-site parking, the use of an existing parking structure (Lot 22), and the development of a new parking structure located adjacent to the east side of Ocean Road where Parking Lot 23 is currently located. Project-related dining commons, convenience store, relocated Student Health Building would be located in “podium” space beneath the parking structure.

Aesthetics

Residential development on the Ocean Road site would consist of new buildings constructed on blocks that would be created by removing an existing windrow of mature eucalyptus trees, realigning Ocean Road eastward, and relocating the Student Health Building. The new residential buildings would have a maximum height ranging between approximately 25 and 70 feet, and would be located adjacent to existing residences in Isla Vista.

Existing apartments in Isla Vista located adjacent to the Ocean Road site are generally two and three stories in height. Separation distances between the new on-campus residential buildings and adjacent apartments in Isla Vista would vary, but would likely range between approximately 10 and 50 feet, which would generally be less than the setback distances provided at the proposed project site between new buildings and off-campus residences. While the new on-campus residential buildings at the Ocean Road site could be visually compatible with the adjacent off-campus apartments in terms of size and appearance, development at the Ocean Road site would have an increased potential to result in shadow and lighting impacts when compared to the significant but mitigable impacts of the proposed project due to the decrease in building separation distances.

The combined aesthetic impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Air Quality

Development of student housing units at the Ocean Road site would require the use of heavy mechanical equipment for grading, foundation preparation and other construction activities. Short-term dust and exhaust emission impacts from construction equipment use at the Ocean Road site would likely be increased when compared to the significant but mitigable short-term impacts of the proposed project because construction operations would occur closer to adjacent off-campus residences. Also, more construction than would occur under the proposed San Joaquin Project due to the realignment of Ocean Road, the relocation of the Student Health Building and the construction of a parking structure.
It is expected that the student housing units developed at the Ocean Road site would be consistent with University and UCSB policies regarding the implementation of energy efficiency design measures, and the resulting energy use at the Ocean Road site would be similar to the proposed San Joaquin project. Substituting 1,003 student-occupied units for 393 for faculty/staff units on the Ocean Road site would not substantially increase or decrease the number of vehicle trips that would be generated by students under the proposed project at the San Joaquin project site, or substantially increase or decrease mobile air emissions that would result from the buildout of student housing units identified in the 2010 LRDP EIR. Therefore long-term air emissions that would result from the occupancy of student residences at the Ocean Road alternative site would be similar to the less than significant long-term air emission impacts of the proposed project.

The combined short- and long-term air quality impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Biological Resources

The Ocean Road site is located in an urbanized area along the western perimeter of the Main Campus and adjacent to Isla Vista. No sensitive habitat resources were identified on or near the Ocean Road site by the 2010 LRDP EIR (LRD EIR Figure 4.3-2, Sensitive Biological Resources). The Ocean Road site does contain a windrow of mature eucalyptus trees, and the construction of residential units would require the removal of those trees. Therefore, this alternative would have the potential to result in impacts to nesting birds and would be required to conduct preconstruction bird nest surveys. This potential impact would be similar to the potentially significant but mitigable bird nesting impact of the proposed project.

Stormwater runoff from the Ocean Road site would be directed through a series of drain pipes to the Campus Lagoon, which has been designated as an Environmentally Sensitive Habitat Area by the 2010 LRDP. Discharges of sediment or other pollutants from the Ocean Road site would have the potential to result in significant short- and long-term impacts to sensitive biological resources provided by the Lagoon. Similar to the proposed project, these types of impacts could be reduced to a less than significant level with the implementation of existing federal, state and UCSB stormwater management requirements.

The proposed San Joaquin Apartments project could result in the development of optional bike path and pedestrian paths, and would construct stormwater management ponds located in wetland buffer areas east of and adjacent to the project site. Impacts from the construction and use of the optional paths and proposed ponds would be reduced to a less than significant level with the implementation of proposed mitigation measures. The Ocean Road Project Site Component would not result in direct (e.g., removal) impacts to sensitive biological resources, but could have the potential to result in significant but mitigable indirect (e.g., off-site) water quality-related impacts to sensitive biological resources of the Campus Lagoon. Therefore, the biological resource impacts of the Ocean Road Component of the Alternative Project Site Alternative would be similar to the potentially significant but mitigable impacts of the proposed project.
The combined biological resource impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Geology

Grading and construction operations at the Ocean Road Site Component of the Alternative Project Site Alternative would have the potential to result in erosion- and sediment-related impacts that could be reduced to a less than significant level through the implementation of best management practices and compliance with existing federal, state and UCSB stormwater management regulations. Therefore, the short-term impacts of this alternative would be similar to the significant but mitigable short-term impacts of the proposed project.

As depicted on EIR Figures 5.4-1 and 5.4-2, it is presumed that the More Ranch fault is located along the general alignment El Colegio Road, which is north of the Ocean Road alternative site. Figure 5.4-1 indicates that two geologic features, an anticline and a syncline,1 cross the central portion of the Ocean Road site. Figure 5.4-2 differs from figure 5.4-1 in that it depicts the Isla Vista fault as extending across the central portion of the Ocean Road Component site. Additional site investigations would be required to determine if the Ocean Road site could be adversely affected by fault movement. Similar to the proposed project, the implementation of recommendations provided by a geotechnical evaluation conducted for the Ocean Road Component site would be required to ensure that seismic safety impacts are less than significant.

The combined geologic impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Greenhouse Gas Emissions

The development of student housing at the Ocean Road Component site would result in short- and long-term emissions of greenhouse gases. It is expected that short-term emissions associated with the elements of the Alternative Project Site Alternative on the Ocean Road site would be somewhat higher than, but generally similar to, the construction-related impacts of the proposed project due to the additional roadway work and building construction (i.e., the realignment of Ocean Road, construction of a parking structure and the relocation of the Student Health Building).

It is expected that the student residential units at the Ocean Road site would be developed consistent with University and UCSB policies regarding the implementation of energy efficiency design measures, and the resulting energy use at the Ocean Road site would be similar to the proposed project. Similarly, there would not be a substantial increase or decrease in the number of vehicle trips when compared to trips generated by students under the proposed Project, or substantially increase or decrease greenhouse gas emissions that would result from the buildout of student housing units identified in the 2010 LRDP. Therefore long-term emissions of

1 An anticline is an arch-like fold in a rock formation, while a syncline is a trough-like fold.
greenhouse gases resulting from the occupancy of student residences at the Ocean Road alternative site would be similar to the less than significant long-term emissions of the proposed project.

The combined short- and long-term greenhouse gas emission impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units Component is discussed in Section 8.2.3.

Hydrology and Water Quality

Grading and construction operations associated with the Alternative Project Site Alternative at the Ocean Road site would have the potential to result in water quality impacts to the Campus Lagoon if sediment and/or other construction-related pollutants were to be released from the site. This potential impact could be reduced to a less than significant level through the implementation of best management practices and compliance with existing federal, state and UCSB stormwater management regulations. Therefore, the short-term water quality impacts of this alternative would be similar to the short-term impacts of the proposed project.

The release of pollutants from the Ocean Road site, such as sediment, hydrocarbons, nutrients, and gross pollutants (trash, litter, vegetative matter) could result in long-term impacts to the water quality of the Campus Lagoon. It is expected that these types of impacts could be reduced to a less than significant level through the implementation of best management practices to minimize pollutant discharges, such as the use of bioswales and low impact development design features. These types of features have been included in the design of the proposed San Joaquin project to reduce the long-term water quality impacts to receiving waters, such as nearby wetlands, the Goleta Slough and the Devereux Slough to a less than significant level. Therefore, the long-term water quality impacts from development of the Ocean Road Component of the Alternative Project Site Alternative would be similar to the long-term water quality impacts of the proposed project.

Much of the Ocean Road site is undeveloped, therefore, the construction of new housing units would result in a substantial increase impermeable area, which could have the potential to result in downstream hydromodification impacts to the Campus Lagoon. It is expected that compliance with the low impact development and hydromodification control requirements of the “Joint Effort” program, along with the implementation of appropriate source control best management practices, would reduce the potential for new housing at the Ocean Road site to result in long-term hydrology and water quality impacts to the Campus Lagoon to a less than significant level. Therefore, the long-term hydrology impacts associated with implementation of the Ocean Road Component of the Alternative Project Site Alternative would be similar to the significant but mitigable long-term hydrology impacts of the proposed project.

The combined hydrology and water quality impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units Component is discussed in Section 8.2.3.
Noise

Construction activities at the Ocean Road site would occur closer to adjacent off-campus residences than would occur at the proposed project site. Therefore, Ocean Road Component of the Alternative Project Site Alternative would result in increased short-term noise impacts when compared to the significant but mitigable impacts of the proposed project.

The Ocean Road site is located adjacent to residences in the community of Isla Vista and setback distances between the new on-campus buildings and adjacent residences in Isla Vista would generally be less than the separation distances between new development and off-site residences (i.e., Storke Ranch) at the proposed project site. By providing less setback distance, the potential for average and peak noise impacts to adjacent residences would be increased at the Ocean Road site when compared to the less than significant long-term noise impacts of the proposed San Joaquin project.

The combined noise impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units Component is discussed in Section 8.2.3.

Transportation and Traffic

Vehicle trip generation that would result from the development of the Ocean Road Component of the Alternative Project Site Alternative would include trips generated by 1,003 students and eight faculty/staff units. Table 8.2-1 presents the trip generation estimates for the Ocean Road Project Site Alternative.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Daily In</th>
<th>Daily Out</th>
<th>Daily Total</th>
<th>AM Peak Hour In</th>
<th>AM Peak Hour Out</th>
<th>AM Peak Hour Total</th>
<th>PM Peak Hour In</th>
<th>PM Peak Hour Out</th>
<th>PM Peak Hour Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Beds</td>
<td>1,003 beds</td>
<td>2,166</td>
<td>10</td>
<td>50</td>
<td>60</td>
<td>110</td>
<td>40</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty/Staff</td>
<td>8 units</td>
<td>48</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean Road Component Total</td>
<td></td>
<td>2,214</td>
<td>11</td>
<td>53</td>
<td>64</td>
<td>112</td>
<td>42</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Project Trip Generation</td>
<td></td>
<td>2,214</td>
<td>11</td>
<td>53</td>
<td>64</td>
<td>112</td>
<td>42</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Ocean Road Component of the Alternative Project Site Alternative would generate the same amount of traffic as the proposed San Joaquin Project. Therefore, traffic impacts of this alternative would similar to the significant but mitigable impacts of the proposed project.
The combined traffic impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units Component is discussed in Section 8.2.3.

8.2.2 Faculty and Staff Residential Units Component

The second component of the Alternative Project Site Alternative evaluates the impacts of relocating the 393 faculty/staff housing units proposed in the 2010 LRDP for the Ocean Road site. The need to relocate the faculty/staff units would be a reasonably foreseeable outcome of the Ocean Road Component of the Alternative Project Site Alternative because in addition to the requirements to provide student housing, the 2010 LRDP EIR mitigation measure POP-3A, and the 2010 Long Range Development Plan Mitigation Implementation and Settlement Agreement, require UCSB to provide up to 1,874 units of faculty/staff housing commensurate with planned employee growth.

Using an average faculty/staff residential unit occupancy rate of 2.6 persons per unit,² the Ocean Road site as analyzed in the 2010 LRDP EIR could accommodate an on-site population of approximately 1,412 people (543 units x 2.6 persons per unit). Therefore, development of the 1,003 student beds and eight faculty/staff units on the Ocean Road site under the Alternative Project Site Alternative would be within the envelope of impacts identified in the LRDP EIR. Relocating the 1,003 student bed spaces and the eight faculty/staff units proposed by the San Joaquin Apartments project to the Ocean Road site would result in a population of approximately 1,024 persons at the Ocean Road site. If the Ocean Road site were to be built-out to the population capacity envisioned by the 2010 LRDP and LRDP EIR, the Ocean Road site would have capacity for 388 additional people (1,412-1,024), which would be the equivalent of approximately 150 faculty/staff residential units assuming an average occupancy rate of 2.6 people per unit. Therefore, the Faculty and Staff Residential Units Component has assumed that 150 faculty/staff units would be developed on the Ocean Road alternative site in addition to the 1,003 student beds and eight faculty/staff units evaluated by the Ocean Road Project Site Alternative.

To fully implement the 2010 LRDP and comply with UCSB’s agreements with the community to provide faculty and staff housing commensurate with planned enrollment and employment growth, the Alternative Project Site Alternative evaluates the effects of providing faculty/staff units displaced from the Ocean Road site by student housing elsewhere on the UCSB campus. The Faculty and Staff Residential Units Component has assumed that 393 (543-150) units of planned faculty and staff housing would be relocated to the San Joaquin project site. Based on an average faculty/staff unit occupancy rate of approximately 2.6 people per unit, this Component would result in a population of approximately 1,022 people at the San Joaquin site, which is similar to the number of undergraduate students (1,003) and faculty/staff (approximately 21 people occupying eight proposed units) that would occupy the proposed San Joaquin Apartments project.

² This is the approximate countywide household size identified by the 2010 LRDP EIR.
Faculty and staff housing has a higher demand for parking spaces than student housing. This is reflected by the 2010 LRDP EIR, which indicates that future parking on the Storke Campus would be provided at a ratio of 1.5 parking spaces for each faculty/staff unit, while parking (on the Main Campus) would be provided at one space for every four student bed spaces. Based on these parking ratios, the proposed San Joaquin project would have a parking demand of approximately 250 spaces and the Faculty and Staff Residential Units Component would have a combined parking demand at the Ocean Road and San Joaquin site of approximately 815 spaces. To meet the increased parking demand, this Faculty and Staff Residential Units Component of the Alternative Project Site Alternative has assumed that an on-site parking structure would be constructed on the San Joaquin site adequate to meet the parking demand of the 393 relocated units.

Aesthetics

The San Joaquin Apartments project would provide 165 student units, 13 units for resident assistants and eight additional units for UCSB faculty and on site resident directors, for a total of 186 on-site residential units. This is approximately one half of the number of residential units that would be provided on the San Joaquin project site by the Faculty and Staff Residential Units Component of the Alternative Project Site Alternative. It would be reasonable to assume that some of residential units provided under this alternative would be smaller in size than the proposed project’s student units, however, it is also likely that additional on-site building area would be required to provide the additional faculty and staff units. In addition, providing on-site parking, likely in an on-site parking structure, would reduce the amount of site area available for developing additional residential units. As a result, implementation of the Faculty and Staff Residential Units Component would likely require that new residential buildings be increased in height to provide additional floor space. Providing taller buildings on the San Joaquin site would have the potential to result in increased aesthetic impacts (i.e., impacts to mountain views, shadows, and compatibility with surrounding development) when compared to the significant but mitigable aesthetic impacts of the proposed project.

The combined aesthetic impacts of the Ocean Road and Faculty and Staff Residential Units Component of the Alternative Project Site Alternative is discussed in Section 8.2.3.

Air Quality

Development faculty/staff units at the San Joaquin site as part of the Faculty and Staff Residential Units Component of the Alternative Project Site Alternative would result in short-term dust and heavy mechanical equipment exhaust emissions that would generally be similar to the significant but mitigable short-term emissions of the proposed project.

As described in Section 5.8 (Transportation and Traffic) of this EIR, and in Table 8.2.1 above, the proposed San Joaquin project would generate approximately 2,214 average daily vehicle trips, consisting of 2,166 average daily trips generated by student residents plus 48 average daily trips generated by faculty/staff. The 393 faculty and staff units that would be provided at the San Joaquin site under the Faculty and Staff Residential Units Component of the Alternative Project Site Alternative would generate approximately 2,358 average daily trips.
(refer to Table 8.2-2 below). Therefore, the mobile emission of the Faculty and Staff Residential Units alternative would be somewhat higher than the less than significant long-term mobile emission impacts of the proposed project.

It is expected that the Faculty and Staff Residential Units Component would be consistent with University and UCSB policies regarding the implementation of energy design measures. Therefore, long-term air emissions that would result from the occupancy of faculty and staff units provided under the Alternative Project Site Alternative would generally be similar to the less than significant long-term air emission impacts of the proposed project.

The combined short- and long-term air quality impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Biological Resources

The development of the Faculty and Staff Residential Units Component of the Alternative Project Site Alternative at the San Joaquin site would result in construction activities and long-term changes to the project site that are similar to the construction and development characteristics of the proposed San Joaquin project. The Faculty and Staff Residential Unit Component would likely require the use of stormwater management ponds similar to those included in the proposed project, and could also provide the optional bicycle and pedestrian paths on the open space parcel east of and adjacent to the San Joaquin site to enhance pedestrian and bicycle travel from the site to the Main Campus. This component would provide parking in a structure located on the San Joaquin site and would not result in the development of a parking lot on the west side of Storke Road, which would avoid potential impacts to the redwood trees on that site. However, potential impacts to the redwood trees resulting from the development of the proposed project would be reduced to a less than significant level with the implementation of proposed mitigation measures.

The combined biological resource impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units Component is discussed in Section 8.2.3.

Geology

As described in EIR Section 5.4 (Geology), potential fault-related impacts to the proposed San Joaquin project would be reduced to a less than significant level by providing setbacks from identified on-site faults and implementing building design recommendations provided by qualified engineering geologists and structural engineers to address ground surface deformation that could be caused by fault-related ground movement. Faculty and staff units developed on the San Joaquin site under the Faculty and Staff Residential Units Component would be required to comply with the same requirements. Therefore, the geologic impacts of this component of the Alternative Project Site Alternative would be similar to the geologic impacts of the proposed project.
The combined geologic impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Greenhouse Gas Emissions

The development of Faculty and Staff Residential Units Component of the Alternative Project Site Alternative at the San Joaquin project site would result in short-term construction-related greenhouse gas emission similar to the emissions that would result from the development of the proposed San Joaquin project.

The residential buildings provided by the Faculty and Staff Residential Units site would likely implement energy efficiency measures similar to those to be provided by the proposed project. Therefore, long-term emissions of greenhouse gas emissions associated with the Faculty and Staff Residential Units Component would be similar to the less than significant long-term emissions of the proposed project. Overall, the greenhouse gas emissions of the Faculty and Staff Residential Unit Component would be similar to the less than significant impacts of the proposed project.

The combined greenhouse gas emissions of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Hydrology and Water Quality

The Faculty and Staff Residential Units Component would result in construction activities and long-term changes to the San Joaquin project site, such as the conversion of parking and mowed turf areas to a developed condition that would be similar to the construction and development characteristics of the proposed San Joaquin project. Therefore, the water quality and hydrology impacts would be similar to the significant but mitigable short- and long-term water quality and hydrology impacts of the proposed project.

The combined short- and long-term hydrology and water quality impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Noise

Construction activities required to develop faculty and staff residences on the San Joaquin site would be similar to the significant but mitigable construction noise impacts of the proposed project.

Faculty and staff residential units developed on the San Joaquin site under the Alternative Project Site Alternative would likely have building setback distances from existing residences in Storke Ranch that are similar to the development characteristics of the proposed project.
Therefore, average and peak noise impacts to nearby off-campus residences would be similar to the less than significant long-term impacts of the proposed project.

The combined short- and long-term noise impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units is discussed in Section 8.2.3.

Transportation and Traffic

The traffic generation characteristics of the Faculty and Staff Residential Units Component are summarized on Table 8.2-2.

Table 8.2-2

Faculty and Staff Residential Units Component Trip Generation

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Daily</th>
<th>AM Peak Hour</th>
<th></th>
<th>PM Peak Hour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Size</td>
<td>In</td>
<td>Out</td>
<td>Total</td>
<td>In</td>
</tr>
<tr>
<td>San Joaquin Site</td>
<td>393 units</td>
<td>2,358</td>
<td>51</td>
<td>153</td>
<td>204</td>
</tr>
<tr>
<td>Proposed Project Trip Generation</td>
<td>2,214</td>
<td>11</td>
<td>53</td>
<td>64</td>
<td>112</td>
</tr>
<tr>
<td>Difference</td>
<td>144</td>
<td>40</td>
<td>100</td>
<td>140</td>
<td>-6</td>
</tr>
</tbody>
</table>

The Faculty and Staff Residential Units Component of the Alternative Project Site Alternative would generate more traffic than the proposed San Joaquin Project. Therefore, traffic impacts of this Component would be greater than the significant but mitigable impacts of the proposed project.

The combined traffic impacts of the Alternative Project Site Alternative associated with development on the Ocean Road Site Component and Faculty and Staff Residential Units Component is discussed in Section 8.2.3.

8.2.3 Combined Impacts of the Ocean Road and Faculty and Staff Residential Units Components

This section evaluates the impacts of the Alternative Project Site Alternative when the combined effects of the Ocean Road and Faculty and Staff Residential Units Components are considered together. As discussed above, the faculty/staff units displaced by construction of student housing on the Ocean Road site as part of the Alternative Project Site Alternative would be shifted to the San Joaquin site – the only on-campus housing site identified by the 2010 LRDP that would be available to accept the displaced 393 faculty/staff units. Elimination of the 393 faculty/staff units would be inconsistent with the LRDP, LRDP EIR mitigation requirements, and agreements between UCSB and the City of Goleta and County of Santa Barbara that UCSB provide student and faculty housing commensurate with planned faculty/staff growth. All of the on-campus housing sites identified by the 2010 LRDP are necessary in order for UCSB to
remain consistent with these requirements. Therefore, relocating the units removed from the Ocean Road site to the San Joaquin site is a reasonably foreseeable consequence of the proposed Ocean Road component of the Alternative Project Site Alternative and the associated impacts require analysis pursuant to CEQA.

Aesthetics

The analysis of the Ocean Road Component of the Alternative Project Site Alternative (Section 8.2.1) concluded that providing 150 student bed spaces at the Ocean Road site would have the potential to result in increased aesthetic impacts to adjacent apartments in Isla Vista when compared to the aesthetic impacts of the proposed project. Providing additional faculty/staff units at the Ocean Road alternative site would further increase the potential for significant aesthetic impacts to adjacent development in Isla Vista. As described in Section 8.2.2, the development of 393 faculty/staff units at the San Joaquin site would result in aesthetic impacts that are increased when compared to the impacts of the proposed project. When considered together, the combined impacts of the Ocean Road and Faculty and Staff Residential Unit Components would result in aesthetic impacts that are increased when compared to the significant but mitigable impacts of the proposed project.

Air Quality

Implementation of the Ocean Road Component of the Alternative Project Site Alternative would result in increased short-term air quality impacts when compared to the impacts of the proposed project because construction activities would occur closer to existing off-campus residences. Long-term air quality impacts of the Ocean Road component would be similar to the impacts of the proposed project. Short-term air quality impacts of the Faculty and Staff Residential Units Component would be similar to the significant but mitigable impacts of the proposed project, however, this component would result in increased long-term impacts when compared to the proposed project. When considered together, the combined impacts of the Ocean Road and Faculty and Staff Residential Unit Components would result in short- and long-term air quality impacts that are increased when compared to the significant but mitigable short-term impacts, and the less than significant long-term impacts of the proposed project.

Biological Resources

The development of 150 faculty/staff units at the Ocean Road site would incrementally contribute to potential water quality impacts that could adversely affect the biological resources of the Campus Lagoon, however, those potential impacts would likely be reduced to a less than significant level through compliance with existing regulations and UCSB policies. Potential biological resource impacts of the Faculty and Staff Residential Units Alternative could also be reduced to a less than significant impact and would be similar to the significant but mitigable impacts that would result from the proposed project. When considered together, the combined impacts of the Ocean Road and Faculty and Staff Residential Unit Components would result in biological resource impacts that are similar to the significant but mitigable impacts of the proposed project.
Geology

Faculty and staff units at the San Joaquin site and the Ocean Road alternative site would be required to be setback from on-site faults and to comply with building foundation design recommendations provided by a site-specific geotechnical investigation. When considered together, the combined impacts of the Ocean Road and Faculty and Staff Residential Unit Components would result in geology impacts that are similar to the significant but mitigable impacts of the proposed project.

Greenhouse Gas Emissions

The development of 150 faculty/staff units at the Ocean Road site would result in short-term greenhouse gas emissions, however, the additional construction-related emissions at the Ocean Road site would not result in a significant impact. The short-term greenhouse gas emissions of the Staff Residential Unit Component would be similar to the less than significant effects of the proposed project. When considered together, the combined short-term greenhouse gas emission of the Ocean Road and Faculty and Staff Residential Unit Components are expected to remain less than significant, similar to the less than significant impact of the proposed project.

As described in Section 8.2.1, the long-term greenhouse gas emissions of the Ocean Road component would be similar to the less than significant impacts of the proposed project. As described in Section 8.2.2, greenhouse gas emissions of the Faculty and Staff Residential Unit Component would also be similar to the less than significant impacts of the proposed project. However, when considered together, the total emissions of greenhouse gases resulting from Ocean Road and Faculty and Staff Residential Unit Components would have the potential to exceed the threshold of significance used to evaluate the long-term greenhouse gas emission impact of the proposed project. Therefore, the Alternative Project Site Alternative would result in a long-term greenhouse gas emission impact that is increased when compared to the less than significant impact of the proposed project.

Hydrology and Water Quality

The additional 150 faculty/staff units at the Ocean Road site would contribute to the significant but mitigable hydrology and water quality impacts that may result from the development of student residents at that site. Since the potential for short- and long-term water quality hydrology impacts at the Ocean Road site could likely be reduced to a less than significant level, this alternative’s impacts would be similar to the impacts of the proposed project. As described in Section 8.2.2, the development of 393 faculty/staff units at the San Joaquin site would result in hydrology and water quality impacts that are similar to the impacts of the proposed project. When considered together, the combined impacts of the Ocean Road and Faculty and Staff Residential Unit Components would result in hydrology and water quality impacts similar to the significant but mitigable impacts of the proposed project.
Noise

The Faculty and Staff Residential Units Component would result in the development of 150 faculty/staff residential units at the Ocean Road site. The analysis of the Ocean Road Component of the Alternative Project Site Alternative (Section 8.2.1) concluded that providing student bed spaces at the Ocean Road site would have the potential to result in increased short- and long-term noise impacts to adjacent apartments in Isla Vista when compared to the noise impacts of the proposed project. Providing additional faculty/staff units at the Ocean Road alternative site would further increase the potential for significant noise impacts to adjacent residences in Isla Vista. As described in Section 8.2.2, the development of 393 faculty/staff units at the San Joaquin site would result in noise impacts that are similar to the impacts of the proposed project. When considered together, however, the combined impacts of the Ocean Road and Faculty and Staff Residential Unit Components would result in noise impacts that are increased when compared to the significant but mitigable impacts of the proposed project.

Transportation and Traffic

The Faculty and Staff Residential Units component would replace the student housing proposed by San Joaquin Apartments project with 393 faculty/staff housing units. In addition, the Ocean Road Component would add more vehicle trips to the traffic generated by the student residents that would be located at the Ocean Road alternative site. As depicted on Table 8.2-3, the combined traffic generated by the Ocean Road and Faculty and Staff Residential Components would be substantially greater than the number of vehicle-trips generated by the proposed project. Due to the substantial increase in traffic generation, the traffic impacts of the Alternative Project Site Alternative would be increased when compared to the significant but mitigable impacts of the proposed project. Mitigation measures similar to those proposed for the San Joaquin Apartments project would be required for the Alternative Project Site Alternative to reduce the traffic impacts of this alternative to a less than significant level. Additional mitigation requirements may also be required because this alternative may result in trip distribution characteristics that would affect roadways and intersections not impacted by the proposed project.
Table 8.2-3
Alternative Project Site Alternative Component Combined Trip Generation Comparison

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Daily</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>San Joaquin Site</td>
<td>393</td>
<td>units</td>
<td>2,358</td>
<td>51</td>
</tr>
<tr>
<td>Ocean Road Site</td>
<td>150</td>
<td>units</td>
<td>900</td>
<td>20</td>
</tr>
<tr>
<td>Component Total</td>
<td>3,258</td>
<td></td>
<td>71</td>
<td>212</td>
</tr>
<tr>
<td>Proposed Project Trip Generation</td>
<td>2,214</td>
<td></td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>Difference</td>
<td>1,044</td>
<td></td>
<td>60</td>
<td>159</td>
</tr>
</tbody>
</table>

8.3 PROJECT REDESIGN ALTERNATIVE

This alternative would continue to provide 1,003 student bed spaces on the project site, eight units for faculty and staff, and other student-serving uses that would be provided by the proposed project. The design modifications evaluated by the Project Redesign Alternative were suggested at the EIR scoping meeting and in response to the Notice of Preparation circulated for the proposed project and include the following:

- **Provide student housing on the 1.5-acre parking lot site on west side of Storke Road.** This alternative would eliminate the proposal to create a new parking lot on the west side of Storke Road, and instead provide student housing on that site. To estimate the number of residential units that could feasibly be relocated to the parking lot site, it was calculated that the 14.4-acre San Joaquin project site would accommodate a residential unit density of approximately 13 units per acre (186 total units divided by 14.4 acres). Assuming the use of design characteristics similar to the proposed project, approximately 19 (13 units per acre multiplied by 1.5 acres) residential units (approximately 114 bed spaces) could be developed on the parking lot site. It is likely that the buildings on the parking lot site would be at least three stories in height, consistent with the 40-foot height limit for the parking lot site depicted on 2010 LRDP Figure D.4 (Proposed Building Heights).

- **On-Site Parking.** To provide parking for use by project residents and replace parking planned for the 1.5-acre site on the west side of Storke Road, this alternative has assumed that a parking area approximately 1.5 acres in area would be provided on the San Joaquin apartments site, which would be roughly equivalent to retaining the first three rows of parking spaces located on the northern portion of the site.
- **Relocate the proposed bicycle/pedestrian path on the San Joaquin site.** The proposed project would provide a bicycle/pedestrian path adjacent to the San Joaquin site’s eastern and northern perimeters. This alternative would relocate the path to the project site’s southern and western perimeters.

Aesthetics

The development of approximately 19 residential units in what would likely be three-story buildings on the west side of Storke Road would result in more intensive development in the parking lot area than would occur under the proposed project. It is not expected, however, that the relocated residential buildings would result in significant impacts to mountain views, or be inconsistent with the general appearance of other buildings in the project area. Shifting parking spaces from the proposed parking lot site to the northern portion of the project site would generally retain the visual conditions that currently exist on the northern portion of the San Joaquin site and would not result in a significant aesthetic impact. Relocating the proposed bicycle path would not substantially change visual conditions that would result from the implementation of the proposed project.

Shifting buildings from the San Joaquin site to the proposed parking area on the west side of Storke Road would facilitate providing an increased setback distance between new buildings in the North Village precinct and residences in Storke Ranch. Setback distances between proposed buildings and the northern project site property line that would be provided by the proposed project would range between 35 and 50 feet. Under the Project Redesign Alternative, the setback distance between the proposed buildings and the northern property line could be about 100 feet. This increased building setback distance would minimize the proposed project’s less than significant building shadow and visual compatibility effects, and would facilitate planting additional landscape trees that would screen views of proposed buildings as seen from Storke Ranch without resulting in additional shadow impacts. Therefore, the Project Redesign Alternative would have reduced aesthetic impacts when compared to the significant but mitigable impacts of the proposed project.

Air Quality

Changes in the proposed project’s design included in the Project Redesign Alternative would not substantially change on-site construction-related operations when compared to the construction characteristics of the proposed project. Therefore, this alternative’s short-term air quality impacts would be similar to the significant but mitigable impacts of the proposed project.

The Project Redesign Alternative would result in a project-related population similar to the population of the proposed project. Therefore, long-term mobile emissions and emissions from the occupancy of the residential units would be similar to the less than significant emissions of the proposed project. Relocating the proposed bike path to the southern and eastern perimeters of the project site would have no effect on air emissions.
Biological Resources

The Project Redesign Alternative would result in construction activities and long-term changes to the San Joaquin site and proposed parking lot site that are generally similar to the construction and development characteristics of the proposed project. None of the design changes that would occur under this alternative would substantially increase or decrease the biological resource impacts that would result from the implementation of the proposed project. Development of this alternative would likely result in impacts to biologically important mature trees along the eastern edge of the San Joaquin site; would have the potential to impact active bird nests; would likely result in the development and use of the water management ponds that would be provided by the proposed project; and could result in the development of the optional pedestrian and bicycle paths to the east of the project site. Therefore, the Project Redesign Alternative would result in impacts to biological resources that are similar to the significant but mitigable impacts of the proposed project.

Geology

Similar to the proposed project, student housing developed under the Project Redesign Alternative would be required to provide setbacks from on-site faults and to comply with building foundation design recommendations provided by a site-specific geotechnical investigation. The design changes implemented under this alternative would not increase or decrease the potential for project-related structures to be affected by fault movement-related impacts. Therefore, the geology impacts of the Project Redesign Alternative would be similar to the significant but mitigable impacts of the proposed project.

Greenhouse Gas Emissions

The redesign measures identified by the Project Redesign Alternative would not substantially change on-site construction-related operations when compared to the construction characteristics of the proposed project. Therefore, this alternative’s short-term greenhouse gas emission would be similar to the less than significant impacts of the proposed project.

The Project Redesign Alternative would result in a project-related population similar to the population of the proposed project. Therefore, long-term mobile emissions of greenhouse gases and emissions from the occupancy of the residential units would be similar to the less than significant emissions of the proposed project.

Hydrology and Water Quality

The Project Redesign Alternative would result in construction activities and long-term changes to the project site, such as the conversion of paved parking and mowed turf areas to a developed condition, that are similar to the construction and development characteristics of the proposed project. The project redesign measures evaluated by this alternative would not substantially increase or decrease the significant but mitigable stormwater hydrology and water quality impacts that would result from the implementation of the proposed project. Therefore,
the Project Redesign Alternative’s potential for short- and long-term water quality impacts, and changes to existing hydrology conditions, would be similar to the impacts of the proposed project.

Noise

The Project Redesign Alternative would reduce the number of buildings and population on the San Joaquin site by shifting buildings/population to the proposed parking lot site on the west side of Storke Road; would result in the use of the northern portion of the San Joaquin site for vehicle parking, similar to existing conditions; and would relocate the proposed bikepath so that it does not extend along the northern perimeter of the project site adjacent to residences in Storke Ranch.

Construction activities required to implement the Project Redesign Alternative would be similar to the significant but mitigable construction noise impacts of the proposed project.

Shifting buildings from the San Joaquin site to the proposed parking area on the west side of Storke Road would facilitate providing an increased setback distance between new buildings in the North Village precinct and residences in Storke Ranch. Setback distances between new buildings and the northern project site property line that would be provided by the proposed project would range between 35 and 50 feet. Under the Project Redesign Alternative, the setback distance between the proposed buildings and the northern property line would be about 100 feet. This increased setback distance would provide a small, but not substantial decrease in noise levels in Storke Ranch resulting from average and peak sounds generated by activities that may occur in and around residential buildings on the San Joaquin site. Any decrease in noise, however, would likely be replaced by sounds that would result from day-to-day use of the parking area that would be established on the north side of the project site under this alternative. Therefore, the long-term noise impacts of this alternative would be similar to the less than significant long-term noise impacts of the proposed project.

The Project Redesign Alternative would relocate the bicycle path proposed for the northern perimeter of the San Joaquin site to the southern perimeter of the site. The relocation of the path would remove a potential noise source from a location near residences in Storke Ranch, however, as depicted by EIR Figures 5.7-12 and 13, the proposed path would not result in significant noise impacts. Any reduction in noise levels in Storke Ranch that may be realized by relocating the bicycle path would likely be replaced by sounds associated with the use of the parking lot that would be provided on the northern portion of the project site under this alternative.

In summary, the Project Redesign Alternative could result in minor project-related noise reductions in Storke Ranch, however, those reductions would likely be replaced by sounds associated with typical parking lot operations. Therefore, this alternative would result in noise impacts that are similar to the less than significant noise impacts of the proposed project.
Transportation and Traffic

The Project Redesign Alternative would provide 1,003 student bed spaces and eight faculty/staff units, similar to the residential unit characteristics of the proposed project. As depicted on Table 8.3-1, the traffic generation characteristics of this alternative would be the same as the traffic generation of the proposed project. Shifting student bed spaces from the San Joaquin site to the proposed parking site on the west side of Storke Road would not alter traffic distribution patterns that would be associated with the proposed project. Therefore, traffic impacts of the Project Redesign Alternative would be the same as the significant but mitigable traffic impacts of the proposed project.

Table 8.3-1
Project Redesign Alternative Trip Generation Comparison

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Daily</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>Student Beds</td>
<td>1,003 beds</td>
<td>2,166</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Faculty/Staff</td>
<td>8 units</td>
<td>48</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Alternative Total</td>
<td></td>
<td>2,214</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>Proposed Project Trip Generation</td>
<td></td>
<td>2,214</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

8.4 2010 LRDP PROJECT DESIGN

The 2010 LRDP Project Design Alternative would result in the development of 600 student bed spaces on the San Joaquin site as described by the 2010 LRDP and as evaluated by the 2010 LRDP EIR. Other design features of the 2010 LRDP Project Design Alternative include the continued use of the existing parking area on the northern portion of the site; a new bicycle path that would extend east to west across the central portion of the project site, and the provision of 12,000 square feet of non-residential space, primarily to serve on-site residents. The alternative has assumed that the number of faculty/staff units provided on the San Joaquin site would be reduced from eight to five as a result of the reduced student population. This alternative would not require the development of a parking lot on the west side of Storke Road.

Aesthetics

The 2010 LRDP Project Design Alternative would reduce building density on the San Joaquin project site and would retain the existing parking area on the northern portion of the site. By retaining much of the existing northern parking area and decreasing building development, increases in building setback distances between new buildings and Storke Ranch could be provided, which could reduce the potential for shadow and visual compatibility impacts when compared to the less than significant impacts of the proposed project. The 2010 LRDP Project
Design alternative would also facilitate planting additional landscape trees on the northern portion of the project site that would screen views of project site buildings as seen from Storke Ranch without resulting in additional shadow impacts. Potential lighting impacts could be reduce by providing increased building setbacks and relocating the proposed bicycle path, however, the use of the northern portion of the site for parking would shift potential parking lot lighting-related impacts from the west side of Storke Road to the San Joaquin site. Overall, lighting-related impacts of this alternative would be similar to the significant but mitigable lighting impacts of the proposed project. Since construction of the parking lot on the west side of Storke Road would not be required under this alternative, the potentially significant but mitigable impacts to the mature redwood trees located on the parking lot site would be avoided. Overall, the aesthetic effects of the 2010 LRDP Project Design Alternative would be reduced when compared to the significant but mitigable impacts of the proposed project.

Air Quality

The 2010 Project Design Alternative would result in less construction activity than the proposed project, although construction emissions would still occur and mitigation measures similar to those for the proposed project would be required to reduce short-term air quality impacts to a less than significant level. Therefore, this alternative’s short-term air quality impacts would generally be similar to the significant but mitigable impacts of the proposed project.

The 2010 LRDP Project Design alternative would result in a reduction in building density and on-site population when compared to the proposed project, which would result in a reduction in long-term mobile and stationary emissions. This reduction, however, would not be permanent. The 403 units eliminated from the proposed project under this alternative would be located elsewhere on campus so that UCSB remains consistent with LRDP EIR mitigation requirements and agreements with the community that the campus will provide student housing commensurate with planned enrollment growth. Therefore, the long-term air emissions of the 2010 LRDP Project Design alternative would eventually be similar to the less than significant long-term air quality impacts of the proposed project.

Biological Resources

The 2010 Project Design alternative would generally result in construction activities that are similar to the construction characteristics of the proposed project. Therefore, the potential for short-term impacts to sensitive biological resources would be similar to the significant but mitigable impacts of the proposed project.

Development associated with the 2010 LRDP Project Design alternative would likely have similar impacts to biologically important mature trees on the San Joaquin site, but would avoid the potentially significant but mitigable impacts to the redwood trees located on the parking lot site on the west side of Storke Road. The alternative would have the potential to result in impacts to nesting birds, however, that impact would likely be similar to the significant and mitigable impact of the proposed project. It is likely that the development under this alternative would result in stormwater drainage conditions that are generally similar to the
proposed project and that stormwater management ponds would be provided to the east of the San Joaquin site. This alternative could also provide the optional bicycle and pedestrian paths on the open space area east of the project site. Therefore, the potential for this alternative to result in impacts to sensitive biological resources near the project site would generally be similar to the significant but mitigable impacts of the proposed project. Overall, the 2010 LRDP Project Design alternative’s long-term impacts to biological resources would be similar to the significant but mitigable impacts of the proposed project.

Geology

Similar to the proposed project, student housing developed under the 2010 LRDP Design Alternative would be required to provide setbacks from on-site faults and to comply with building foundation design recommendations provided by a site-specific geotechnical investigation. The design changes implemented under this alternative would not increase or decrease the potential for project-related structures to be affected by fault movement-related impacts. Therefore, the geology impacts of this alternative would be similar to the significant but mitigable impacts of the proposed project.

Greenhouse Gas Emissions

The 2010 LRDP Design Alternative would result in less construction activity on the project site than the proposed project. However, this alternative would only result in an incremental reduction in short-term, construction-related emissions when compared to the proposed project. As a result, this alternative’s short-term greenhouse gas emission impacts would be similar to the less than significant impacts of the proposed project.

The 2010 LRDP Project Design alternative would result in a reduction in building density and on-site population when compared to the proposed project, which would result in a reduction in long-term mobile and stationary emissions of greenhouse gases when compared to the proposed project. This reduction, however, would not be permanent. The 403 units eliminated from the proposed project under this alternative would be located elsewhere on campus so that UCSB remains consistent with LRDP EIR mitigation requirements and agreements with the community that the campus will provide student housing commensurate with planned enrollment growth. Therefore, long-term greenhouse gas emissions of the 2010 LRDP Project Design alternative would eventually be similar to the less than significant long-term greenhouse gas impacts of the proposed project.

Hydrology and Water Quality

The 2010 LRDP Project Design Alternative would result in construction activities and long-term changes to the San Joaquin site that would generally result in impacts that are similar to the impacts of the proposed project, although runoff volumes from the project site could be incrementally increased because much of the impermeable paving located in the northern parking lot area would be retained. This alternative would avoid the less than significant hydrology and water quality impacts that would result from the development of the parking lot on the west side of Storke Road. Overall, the hydrology and water quality impacts of the 2010 LRDP Project
Design alternative would be similar to the significant but mitigable impacts of the proposed project.

Noise

The 2010 LRDP Project Design Alternative would result in a reduction in the number of buildings and population on the project site. The proposed bikepath on the San Joaquin site would be relocated to an area near the center of the site, and the northern portion of the San Joaquin site would continue to be used for vehicle parking similar to existing conditions.

Increased setback distances between new buildings on the project site and residences in Storke Ranch would provide an incremental but not substantial decrease in noise levels in Storke Ranch compared to the impacts of the proposed project. However, the decrease in noise would likely be replaced by sounds resulting from day-to-day use of the parking area that would be provided on the north side of the project site.

The 2010 LRDP Project Design alternative would increase the setback distance between the proposed bicycle path on the San Joaquin and nearby residences in Storke Ranch. The relocation of the path would reduce the potential for peak noise impacts in Storke Ranch, however, as depicted by EIR Figures 5.7-12 and 13, the proposed path would not result in a significant noise impact. Any reduction in noise levels in Storke Ranch that may be realized by relocating the bicycle path would likely be replaced by sounds associated with the use of the parking lot that would be provided on the northern portion of the project site under this alternative.

In summary, the 2010 LRDP Project Design alternative could result in minor noise reductions in Storke Ranch, however, those reductions would likely be replaced by sounds associated with average and peak parking lot operation noise. Therefore, this alternative would result in noise impacts that are similar to the less than significant noise impacts of the proposed project.

Transportation and Traffic

The 2010 LRDP Project Design Alternative would result in less on-site population on the San Joaquin site, which would result in a reduction in vehicle trip generation. Table 8.4-1 presents the trip generation estimates of the 2010 LRDP Project Design alternative.
Table 8.4-1
2010 LRDP Project Design Alternative Trip Generation Comparison

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Size</th>
<th>Daily</th>
<th>AM Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In</td>
<td>Out</td>
<td>Total</td>
</tr>
<tr>
<td>Student Beds</td>
<td>600 beds</td>
<td>1,296</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Faculty/Staff</td>
<td>5 units</td>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Alternative Total</td>
<td></td>
<td>1,326</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>Proposed Project Trip Generation</td>
<td></td>
<td>2,214</td>
<td>11</td>
<td>53</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-888</td>
<td>-4</td>
<td>-21</td>
</tr>
</tbody>
</table>

The reduction in student housing and faculty/staff units would result in a substantial reduction in vehicle-trips when compared to the proposed project. Consequently, the traffic impacts of the 2010 LRDP Project Design alternative would be reduced when compared to the significant but mitigable impacts of the proposed project. This reduction in traffic generation, however, would not be permanent. The 403 units eliminated from the proposed project under this alternative would be located elsewhere on campus so that UCSB remains consistent with LRDP EIR mitigation requirements and agreements with the community that the campus will provide student housing commensurate with planned enrollment growth. Therefore, long-term traffic generation would eventually be similar to the traffic generation of the proposed project.

8.5 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

Each of the alternatives to the San Joaquin Apartments project are listed on Table 8.5-1. This table summarizes the potential for each alternative to avoid, or result in reduced, similar or increased environmental impacts when compared to the respective impacts of the proposed project.

The No Project Alternative would avoid all environmental impacts associated with the San Joaquin Apartments project. Therefore, the No Project Alternative is the environmentally superior alternative. The No Project alternative, however, would not implement any of the proposed projects’ objectives and would not provide any of the beneficial aspects of the project, such as providing additional on-campus student housing. CEQA Guidelines Section 15126.6(e)(2) indicates that “if the environmentally superior alternative is the ‘no project’ alternative, the EIR shall also identify the environmentally superior alternative among the other alternatives.”

The Alternative Project Site Alternative, which consists of the Ocean Road Project Site and Faculty and Staff Housing Units Components, would result in increased aesthetic, air quality, long-term greenhouse gas, noise, and traffic impacts when compared to the impacts of the proposed project. Therefore, this alternative would not be environmentally superior to the proposed project.
As depicted on Table 8.5-1, both the Project Redesign and 2010 LRDP Design Alternatives would reduce aesthetic impacts when compared to the impacts of the proposed project. Other environmental impacts of the Project Redesign and 2010 LRDP Design Alternatives would be similar to the impacts of the proposed project. The Project Redesign Alternative would fulfill the proposed project’s basic objectives of providing on-campus student housing commensurate with planned student enrollment growth identified by the 2010 LRDP, and providing housing that is compatible with surrounding land uses. The 2010 LRDP Design Alternative would fulfill the proposed project’s objective of providing housing that is compatible with surrounding land uses, but would not achieve the objective of providing student housing commensurate with planned student enrollment growth, which is also a requirement of LRDP EIR mitigation requirements and requirements of agreements that UCSB has entered into with the County of Santa Barbara and the City of Goleta. As described in Section 3.2.1 of this EIR, existing student enrollment at UCSB has required that approximately 300 students be “triple bunked” in Santa Catalina Residence Hall rooms designed for two students. Providing bed spaces for the existing “triple bunked” students would be accommodated by the LRDP Design Alternative, however, student bed capacity necessary to accommodate UCSB enrollment growth anticipated to occur in the near future would not be provided under the LRDP Design Alternative, and could result in inconsistencies with LRDP mitigation requirements and agreements made with the community. Therefore, the Project Redesign Alternative would be the alternative, other than the No Project Alternative, that is environmentally superior to the proposed project and fulfills the basic objectives of the proposed project.
Table 8.5-1
San Joaquin Apartments Project
Alternatives Impact Comparison Summary

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Aesthetics</th>
<th>Air Quality</th>
<th>Biology</th>
<th>Geology</th>
<th>Greenhouse Gas</th>
<th>Hydrology/Water Quality</th>
<th>Noise</th>
<th>Traffic</th>
<th>Project Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Project</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Avoided</td>
<td>Not Achieved</td>
</tr>
<tr>
<td>Alternative Project Site Alternative</td>
<td>Increased</td>
<td>Increased</td>
<td>Similar</td>
<td>Similar</td>
<td>ST-Similar LT-Increased</td>
<td>Similar</td>
<td>Increased</td>
<td>Increased</td>
<td>Achieved</td>
</tr>
<tr>
<td>Project Redesign</td>
<td>Reduced</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Achieved</td>
</tr>
<tr>
<td>2010 LRDP Design</td>
<td>Reduced</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Similar</td>
<td>Partially Achieved</td>
</tr>
</tbody>
</table>

KEY
Avoided = Environmental impacts of the proposed project would not occur under this alternative.
Reduced = This alternative would result in reduced environmental impacts when compared to the impacts of the proposed project.
Similar = This alternative would result in environmental impacts that are similar to the impacts of the proposed project.
Increased = This alternative would result in increased environmental impacts when compared to the impacts of the proposed project.
ST = Short-Term
LT = Long-Term